
Java Batch Job Framework
Basics Tutorial Guide

Author: Adym Lincoln, Java Batch Job Framework
Copyright © 2006-2010, Java Batch Job Framework Software, All Rights Reserved

PREAMBLE .. 3

GLOSSARY ... 3
REFERENCES .. 3

BASICS TUTORIALS - DEVELOPMENT ... 4

PREREQUISITES ... 4
PROJECT SETUP ... 4
ADDING THE JBJF JAR FILE .. 8
CREATING CLASSES .. 10
CREATING THE JBJF BATCH DEFINITION FILE ... 14
ROOT ELEMENT .. 16
JBJF-PARAMETERS ... 16
JBJF-EMAIL .. 16
JBJF-DIRECTORIES ... 17
JBJF-TASKS .. 17
JBJF-LOGS .. 18
CREATING THE LOG4J PROPERTIES FILE .. 19

BASICS TUTORIALS - RUNNING THE BATCH JOB .. 21

LAUNCH FACILITY .. 21
CONSOLE CONFIGURATION .. 25

OTHER RESOURCES ... 34

Java Batch Job Framework

Preamble
This tutorial assumes that you've read through the User Guide and more importantly,
the Chapter on Essential Concepts. In this tutorial we will focus on the following
concepts:

 Logging
 Email
 Task List

Glossary

Name Description/Comments
JBJF A document acronym for Java Batch Job Framework.
XML Industry standard for Extensible Markup Language. A

simple language for adding structure to data and
documents.

XML Definition A coding paradigm that combines Java's programming
language with XML configuration files.

JBJF Batch Definition File A specialized XML file that contains data and elements
specific to a JBJF batch job.

References

 Title: jbjf-user-guide.pdf
Location: http://jbjf.sourceforge.net/pdfs/jbjf-user-guide.pdf
Author: Adym S. Lincoln
Referenced Revision: 1.0.0

Basics Tutorial - Version 1.3.0 Page 3 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

http://jbjf.sourceforge.net/pdfs/jbjf-user-guide.pdf

Java Batch Job Framework

Basics Tutorials - Development
In this tutorial we'll focus on the basics of JBJF. This includes logging, email and
especially the task list.

Prerequisites
The tutorial focuses on the essential services that JBJF supplies. Directories, Email and
Logging are core services of JBJF. We will touch on all these core services in this first
tutorial.

For this tutorial, I'll be using the following toolset:
 Some working Email recipients
 A working SMTP email host
 Windows 2000/XP/Vista
 Eclipse 3.2.1(+), Callisto or better
 JDK 1.6.0-12(+), Sun Microsystems mixed mode
 A bundled JBJF runtime package or the JBJF source code from the SourceForge

JBJF File Release repository. This should be setup in the same Eclipse workspace
where you'll be doing the tutorials.

While the coding, builds and runtime will be done on a Windows desktop, any subtle
differences to Unix or Linux can be easily adjusted.

Project Setup
Checkout the JBJF project or download a library/source package from the SourceForge
repository. Unzip the library/source package into your desired folder location. For the
purposes of this tutorial I'll refer to this location as ${jbjf-dir}. I'll be using a source code
package for these tutorials, but you are free to use a binary package and just adjust
your Eclipse environment accordingly.

JBJF Downloads Page - http://sourceforge.net/projects/jbjf/

Open up your Eclipse and point it to the ${jbjf-dir}. For my examples, I'm using one
Eclipse project to handle the JBJF source code and a separate project for the Tutorials.
We'll actually work through the build process and deploy the JBJF to the tutorial project
as a binary jarfile. So, while we're learning about how to code a JBJF batch job, we'll
also be learning how to build and deploy the JBJF library.

Basics Tutorial - Version 1.3.0 Page 4 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

http://sourceforge.net/projects/jbjf/

Java Batch Job Framework

(Typical Eclipse workspace with JBJF source project)

Next, we need to create a tutorial project that we can build our batch job and tasks in.
For this tutorial, I'll name my tutorial project jbjf-tutorial-basics. We'll refer to this as
the ${tutorial-project-dir}. When we create the new project, set a source folder called
src and set the Default output folder to jbjf-tutorial-basics/build...from the Source tab
click the link Create new source folder. Then type in src and click the Finish button. By
default, Eclipse uses the jbjf-tutorial-basics/bin for output, but we'll be using the jbjf-
tutorial-basics/bin for console script files (*.bat, *.sh). See figures 1.1 and 1.2.

Basics Tutorial - Version 1.3.0 Page 5 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

(Figure 1.1, Create a Java Project) (Figure 1.2, the ./src and ./build options)

If you downloaded the source package for the JBJF then read through this section. If
you are using a binary JBJF jarfile, skip ahead to the next step. For a source package,
start by clicking on the Projects tab and then click the Add button. Locate the JBJF
project from the list and click the checkbox. Then click the OK button to complete the
addition. See figures 2.1 and 2.2.

(Figure 2.1, The Projects Tab) (Figure 2.2, adding the JBJF project)

For a binary jarfile JBJF package, the simplest way to add the JBJF framework after the
project is created. For now, continue to create the project and we'll add the JBJF
framework later. Once you've added the jbjf project, click the Finish button to create
the project.

Once the project has been created, we also need to add the following sub-folders
within the jbjf-tutorial-basics project. For each sub-folder to be added, right click on

Basics Tutorial - Version 1.3.0 Page 6 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

the jbjf-tutorial-basics project and select New -> Folder. Then type in the name and
click the Finish button.

Create the following sub-folders:
 lib
 etc
 logs

This completes the project setup. Your new tutorial project should be similar to the
following:

Basics Tutorial - Version 1.3.0 Page 7 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Adding the JBJF Jar file
As mentioned before, the binary JBJF package can be added to the project as a library.
We've already created a sub-directory in the tutorial project called ./lib. So take your
JBJF jar file download package and place it in the ./lib sub-directory in the tutorial
project.

Now, right-click on the tutorial projects folder and select Properties at the bottom of
the pop-up menu. This will bring up the Project Properties dialog. Click the Java Build
Path option located on the side and then click the Libraries Tab.

Basics Tutorial - Version 1.3.0 Page 8 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Now click the Add JARS... button and locate the jbjf jar file located in the ./lib sub-folder
of the tutorial project.

Click the OK button and the JBJF framework will be added to the tutorial project as a
library.

Basics Tutorial - Version 1.3.0 Page 9 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Creating Classes
Before we begin creating classes, we first need to setup a couple of Java packages to
hold our classes. Essentially, we'll be creating Tasks (sub-classes of the AbstractTask
class) within the tutorial project. For this, we'll create a Java package called
org.jbjf.tasks.

Within the jbjf-tutorial-basics project is a folder called src with a special source code
icon. Right-click on the src folder and select New -> Package. Name the new package
org.jbjf.tasks and click the Finish button to add the package.

Basics Tutorial - Version 1.3.0 Page 10 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Next, we need to add our first task class to the project. For this first tutorial, we'll be
setting up a fairly useless batch job that iterates through a series of tasks. No real work
gets accomplished and all output will be to the console and the logfile.

Right-click on the new package and select New -> Class from the pop-up menu. Name
your class something associated with which tutorial and what task. For me, I named it
Task001Basics. The Superclass: should be AbstractTask from org.jbjf.core. Make sure
you click the checkboxes Constructors from superclass, Inherited abstract methods and
Generate comments. One or more of these may already be selected.

Click the Finish button to create the new class. Depending on your Eclipse preferences,
Eclipse should create the class, place it in the Editor and then flip to the Java
Perspective. For this first tutorial, our tasks are going to write to the console...nothing
fancy, but it will illustrate the basics of the JBJF. We also won't be creating an
AbstractBatch; we'll use a built in DefaultBatch class to run our tasks. Again, we want
the first tutorial to be quick, easy and fun.

Copy and paste the following code into your runTask() method of your new class:

 getLog().debug("Task [Task001Basics]...Starting...");
 getLog().debug("Task [Task001Basics]...Complete...");
Basics Tutorial - Version 1.3.0 Page 11 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

The JBJF uses Apache's Log4j to handle the logging. As such, the Logger gets initialized
in the AbstractBatch sub-class (parent class of this task), in our case the builtin
DefaultBatch class within the JBJF. Thus, by the time the runTask() method is run, the
Log4j logger is ready to use. We use the getLog() method to fetch that logger. The rest
is standard log4j coding. The getLog().debug() means the log4j level needs to be set to
DEBUG in order to see these logging entries. We'll set that level in a minute.

At this point your class should be similar to the following, focus on the constructor and
the runTask() method:

public class Task001Basics extends AbstractTask {
 /**
 * Stores a fully qualified class name. Used for debugging and
 * auditing.
 * @since 1.0.0
 */
 public static final String ID = Task001Basics.class.getName();
 /**
 * Stores the class name, primarily used for debugging and so
 * forth. Used for debugging and auditing.
 * @since 1.0.0
 */
 private String SHORT_NAME = "Task001Basics()";
 /**
 * Stores a <code>SYSTEM IDENTITY HASHCODE</code>. Used for
 * debugging and auditing.
 * @since 1.0.0
 */
 private String SYSTEM_IDENTITY = String.valueOf(System.identity­
HashCode(this));
 /**
 *
 */
 public Task001Basics() {
 // TODO Auto-generated constructor stub
 }
 /* (non-Javadoc)
 * @see org.jbjf.core.AbstractTask#runTask(java.util.HashMap)
 */
 @Override
 public void runTask(HashMap pjobParameters) throws Exception {
 getLog().debug("Task [" + this.SHORT_NAME + "]...Starting...");
 getLog().debug("Task [" + this.SHORT_NAME + "]...Complete...");
 }
}

Don't be concerned about the reference to this.SHORT_NAME. This is a constant
that gets created by my Eclipse Preferences for a new Class/Type. While the initial code

Basics Tutorial - Version 1.3.0 Page 12 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

snippet used a hard-coded class name (Task001Basics). I've got a simple reference
to a static constant for the class name.

Eclipse Tip:
You can set various code preferences within Eclipse by going to Window -> Preferences
-> Java -> Code Style -> Code Templates. Select and expand Code. In here are a
number of different templates that can be used for code generation when certain Java
elements get created. Thus, my static constant SHORT_NAME above is placed within
the Class body template:

 /**
 * Stores a fully qualified class name. Used for debugging and
 * auditing.
 * @since 1.0.0
 */
 public static final String ID = ${type_name}.class.getName();

 /**
 * Stores the class name, primarily used for debugging and so
 * forth. Used for debugging and auditing.
 * @since 1.0.0
 */
 private String SHORT_NAME = "${type_name}()";

 /**
 * Stores a <code>SYSTEM IDENTITY HASHCODE</code>. Used for
 * debugging and auditing.
 * @since 1.0.0
 */
 private String SYSTEM_IDENTITY = String.valueOf(System.identityHashCode(this));

Note the placement of variable such as ${type_name} in order to have this template
work for any class.

Repeat the above steps for a second AbstractTask sub-class...again name the class
something appropriate for a 2nd task in the first tutorial. Task002Basics or something.

When you're finished, you should have two classes in the org.jbjf.tasks package of your
jbjf-tutorial-basics project. Each should be similar in structure, containing a default
constructor and a runTask() method with a couple of log4j output statements.

Basics Tutorial - Version 1.3.0 Page 13 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

By extending the AbstractTask we inherit the partial implementation of the initTask()
method. The default functionality of the AbstractTask.initTask() will provide the
following services for your sub-class:

 Iterates through any <resource> elements, resolving the objects as needed. The
type attribute of the resource element serves two purposes, a key to the job
stack or a key to a JBJF Named Resource within the Batch Definition file. In
general, if type equals an existing JBJF element name, then it gets processed.
For the AbstractTask, the following JBJF elements are recognized and processed
by initTask():

 log-definition
 ftp-definition
 plugin (prefix)
 Any other type value is considered a custom <resource> elements are
recognized by the initTask().
 Other special resources such as sql-definition and export-definition
objects need to be processed in your own task by over-riding the initTask()
method. Your initTask() is free to call super.initTask() to pre-process some of
the <resource> elements, but your initTask() should then process the various
special objects needed by the task sub-class. See the Advanced tutorials on
JBJF for further details on this.

 Check for archivist status and pull the Zipper and Archivist objects off the job-
stack when the archivist is enabled.

It’s critical to keep in mind the actions of initTask() as well as when and when-not it’s
being run. JBJF by default runs initTask() prior to runTask(), so be attentive to the
subtle difference between extending AbstractTask and implementing ITask.

Creating the JBJF Batch Definition file
Now that we've got some tasks, let focus on the JBJF Batch Definition file. This is the
XML file that provides all the data, parameters and task list to the batch job. As I've
Basics Tutorial - Version 1.3.0 Page 14 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

already mentioned, we won't be writing an AbstractBatch sub-class, we'll just use the
DefaultBatch from the JBJF framework and supply it our JBJF Batch Definition file in the
command line arguments.

For this initial JBJF Definition file we'll use a minimal number of XML elements, just
enough to get the job to run. There is an example JBJF Batch Definition file included in
the CVS repository (jbjf-base-definition.xml), I encourage you to download and copy it
as a starting point. Look in the ./etc sub-directory. Or you can code the XML from
scratch. For the purposes of this tutorial I'll build the file from scratch, placing XML
segments at each stage that you may copy as we build the file up.

For this tutorial we need to implement:
 <jbjf-parameters>
 <jbjf-email>
 <jbjf-directories>
 <jbjf-tasks>
 <jbjf-logs>

Start by right-clicking on the ./etc sub-directory of the project and select New > File. In
the File name: put jbjf-basics-tutorial.xml and click the Finish button.

Basics Tutorial - Version 1.3.0 Page 15 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

root element
To start our XML file we need the root element. The following snippet will provide you
a basic template to start from.

<?xml version="1.0" encoding="UTF-8"?>
<!--
FILE : jbjf-tutorial-001.xml
DATE : February 12, 2007
DEVELOPER : Adym S. Lincoln
PURPOSE :
Basic tutorial JBJF Batch Definition file
-->
<jbjf-batch-job>
</jbjf-batch-job>

jbjf-parameters
For this element we change the name to something like jbjf-tutorial-001, or something
that indicates our first tutorial. We'll disable the archivist and enable the email.

 <jbjf-parameters>
 <name>jbjf-tutorial-basics</name>
 <enable-archivist>N</enable-archivist>
 <enable-email>Y</enable-email>
 </jbjf-parameters>

Type or copy and paste the above snippet within the root element. Your XML file
should be similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<!--
FILE : jbjf-tutorial-001.xml
DATE : February 12, 2007
DEVELOPER : Adym S. Lincoln
PURPOSE :
Basic tutorial JBJF Batch Definition file
-->
<jbjf-batch-job>
 <jbjf-parameters>
 <name>jbjf-tutorial-001</name>
 <enable-archivist>N</enable-archivist>
 <enable-email>Y</enable-email>
 </jbjf-parameters>
</jbjf-batch-job>

jbjf-email
The email parameters will differ, depending on the name of your SMTP host. Make
sure to setup at least one email recipient and that the attachments attribute is missing
or set to N. Also, the email recipients and the SMTP host below are not valid, you'll
need to supply your own values in here.

Basics Tutorial - Version 1.3.0 Page 16 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

 <jbjf-email>
 <notifications>
 <email attachments="N">lincolnb@hotmail.com</email>
 <email>lincolnc@hotmail.com</email>
 </notifications>
 <email-host>smtp.host.org</email-host>
 <email-sender>jbjf-tutorial-basics@hotmail.com</email-sender>
 </jbjf-email>

Again, type or copy and paste the XML snippet within the root element. Your XML file
should be similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<!--
FILE : jbjf-tutorial-001.xml
DATE : February 12, 2007
DEVELOPER : Adym S. Lincoln
PURPOSE :
Basic tutorial JBJF Batch Definition file
-->
<jbjf-batch-job>
 <jbjf-parameters>
 <name>jbjf-tutorial-001</name>
 <enable-archivist>N</enable-archivist>
 <enable-email>Y</enable-email>
 </jbjf-parameters>
 <jbjf-email>
 <notifications>
 <email attachments="N">lincolnb@hotmail.com</email>
 <email>lincolnc@hotmail.com</email>
 </notifications>
 <email-host>smtp.host.org</email-host>
 <email-sender>jbjf-tutorial-basics@hotmail.com</email-sender>
 </jbjf-email>
</jbjf-batch-job>

NOTE : From this point forward, each XML snippet should be placed within the root
element.

jbjf-directories
For this first tutorial we use a minimal set of directories.

 <jbjf-directories>
 <directory name="base" addressing="relative">.</directory>
 <directory name="log4j" addressing="relative">etc</directory>
 </jbjf-directories>

jbjf-tasks
Using the fully qualified names from the classes we developed, let's setup the task-list
for this batch job.

Basics Tutorial - Version 1.3.0 Page 17 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Eclipse Tip:
The fully qualified class name can be copied from the Java Perspective by simply right-
clicking on the Java class and selecting "Copy Qualified Name". When you select Paste
you'll need to remove the .java file extension, but it saves time.

 <jbjf-tasks>
 <task name="t001" order="1" active="true">
 <class>org.jbjf.tasks.Task001Basics</class>
 </task>
 <task name="two" order="2" active="true">
 <class>org.jbjf.tasks.Task002Basics</class>
 </task>
 </jbjf-tasks>

jbjf-logs
We only need a single log file for this first tutorial. We'll create the log4j.properties file
in a little bit.

 <jbjf-logs>
 <log-definition name="default">
 <log4j category="org.jbjf.tutorial">./etc/log4j.proper­
ties</log4j>
 </log-definition>
 </jbjf-logs>

Create a new sub-directory in the ${project-dir} called etc...${project-dir}/etc. Then
place your JBJF Batch Definition file in here. This completes the JBJF Batch Definition
setup. In the next section we'll create a simple log4j.properties file using the same
name as indicated in the <jbjf-logs> entry.

Basics Tutorial - Version 1.3.0 Page 18 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Creating the Log4j Properties file
As a final step, we need to create a log4j properties file. Without diving into all the
details of log4j, we really just need to match up our log4j category in the properties file
with the category attribute we put in the <log4j> entry in the <jbjf-logs> XML
element. The following is a workable properties file. Again, right-click on the ./etc
folder in the project and select New > File. In the File dialog, name the file
log4j.properties:

Then copy the following code snippet and paste it into the log4j.properties file:

See http://logging.apache.org/log4j/docs/manual.html
for log4j configuration.
See http://logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLay­
out.html
for conversion pattern formatting.
Basics Tutorial - Version 1.3.0 Page 19 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

log4j.category.org.jbjf.tutorial=DEBUG, logfile, commandline

log4j.appender.logfile=org.apache.log4j.DailyRollingFileAppender
log4j.appender.logfile.file=./logs/jbjf-tutorial-basics.log
log4j.appender.logfile.DatePattern='.'yyyy-MM-dd
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
log4j.appender.commandline=org.apache.log4j.ConsoleAppender
log4j.appender.commandline.layout=org.apache.log4j.PatternLayout
log4j.appender.commandline.layout.ConversionPattern=%d [%t] %-5p %c - %m%n

I've bolded and italicized the key entries for the properties file. You'll not the need to
create a sub-directory in the ${project-dir} called logs...${project-dir}/logs.

Basics Tutorial - Version 1.3.0 Page 20 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Basics Tutorials - Running the Batch Job
There are a couple of ways to execute the batch job. The easiest way involves using the
Eclipse Launch facility. Another way is to use the traditional jarfile and script file
process. More involved, but not impossible. The basics tutorial includes code, jarfiles
and script files for both approaches.

Launch Facility
The easy approach is to use the Launch Facility built into Eclipse. From the jbjf project
locate the DefaultBatch class...contained within the org.jbjf.core package. Right click on
the DefaultBatch class and select Run As -> Java Application.

This attempts to run the DefaultBatch, but it will throw an exception immediately and
this will show up in the console view of Eclipse:

Basics Tutorial - Version 1.3.0 Page 21 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

The Exceptions occur because the JBJF Batch Definition file wasn't supplied via the
command line, but this does create a Launch Configuration for us. To correct the
exceptions bring up the Launch Configurations dialog...Run menu -> Open Run Dialog...
OR Run menu -> Open Debug Dialog...

We need to make the following changes and additions. First, the Project: assigned to
the Launch Configuration is jbjf. We need to change it to our jbjf-tutorials-basics
project. Click on the Browse button and select the jbjf-tutorial-basics Project.

Basics Tutorial - Version 1.3.0 Page 22 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Next, we need to supply two command line parameters to the DefaultBatch class:
- definition=./etc/jbjf-basics-tutorial.xml
- name=jbjf-basics-tutorial

Ordinarily we would only need to supply a single command line argument, the JBJF
Batch Definition file. But because we didn't write our own AbstractBatch sub-class, we
are using the DefaultBatch sub-class in the jbjf Project and it requires a definition file as
well as a batch job name. That said, click on the Arguments Tab and put in the two
command line arguments.

Basics Tutorial - Version 1.3.0 Page 23 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Click the Apply button and then the Debug/Run button. This will rerun the application
now, passing the command line argument as requested. Logging results and output will
appear on the Console View of Eclipse...the amount of output will depend on the level
of logging you set in the Log4j properties file. In my case, I have the DEBUG log level
and my output is as follows:

2007-04-16 09:27:50,394 [main] INFO org.jbjf.tutorial - Starting jbjf-tutorial-basics...
2007-04-16 09:27:50,394 [main] INFO org.jbjf.tutorial - Work Unit ... Starting ...class
org.jbjf.tasks.Task001Basics
2007-04-16 09:27:50,394 [main] DEBUG org.jbjf.tutorial - Initialize Work Unit...Start...
2007-04-16 09:27:50,394 [main] DEBUG org.jbjf.tutorial - Initialize Work Unit...Com­
plete...
2007-04-16 09:27:50,394 [main] DEBUG org.jbjf.tutorial - Task
[Task001Basics()]...Starting...
2007-04-16 09:27:50,394 [main] DEBUG org.jbjf.tutorial - Task [Task001Basics()]...Com­
plete...
2007-04-16 09:27:50,394 [main] INFO org.jbjf.tutorial - Work Unit ... Complete ...
2007-04-16 09:27:50,394 [main] INFO org.jbjf.tutorial - Finishing jbjf-tutorial-basics...

Finally, if your SMTP email host, recipients and sender properties are correct, then
you'll receive an email at those email recipients that indicates a successful batch job
run. In the example below, I sent my email to a freebie recipient:

Basics Tutorial - Version 1.3.0 Page 24 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Console Configuration
The traditional approach is to compile our code into jarfiles then write script files that
setup a CLASSPATH and call into the main() method of the Java class. To work through
this section you should be familiar with Ant build files and scripting languages such as
Windows BAT/CMD, Linux SH/BASH.

If you are currently using a source package with your tutorials, you'll need to work
through this section. If you're already using a JBJF binary package, you can skip to the
next section.

Start by building the jbjf into a jarfile. Move to the jbjf Project and right-click on the
build.xml file contained at root of the Project directory. Select the Run As -> Ant Build...
This brings up the Ant build dialog. Depending on your Eclipse preferences/setting, you
should see the Targets Tab. You need to select two targets in the following order, by
default the make-local target will already be selected. As such, you need to uncheck it,
then check the clean and make-bundles to get the proper sequence:

 clean
 make-bundles

Basics Tutorial - Version 1.3.0 Page 25 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Click the Run button to have Ant compile and build the jarfiles. The make-bundles Ant
target builds bundled jarfiles, the jbjf code along with all the supporting libraries for
jbjf. There are multiple jarfiles for the Windows and *nix platforms. When working
with the jarfile, make sure you copy the correct platform file. When the build
completes the jbjf-<platform>-<ver>.jar file will be in the ./deploy directory of the jbjf
project. You may have to select the jbjf project and press the F5 key to refresh the
project. This will reveal the ./deploy directory so you can view the jbjf-<platform>-
<ver>.jar file.

Basics Tutorial - Version 1.3.0 Page 26 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Copy the jbjf-<platform>-<ver>.jar file over to the ${tutorial-project-dir}/lib. From here,
we'll be building a jarfile with our tutorial code in it, then use both jarfiles in the script
files. When using the Ant build.xml file contained within the ${tutorial-project-dir},
make sure the jbjf-<platform>-<ver>.jar file is placed within the ${tutorial-project-
dir}/lib directory. The tutorial Ant build file expects the jbjf-<platform>-<ver>.jar file to
be in the ./lib directory of the tutorial project directory. Otherwise, adjust the Ant
build.xml file to coincide with the correct location.

Finally, we need to swap out the source JBJF Project with the new jbjf-<platform>-
<ver>.jar file. Right-click on the ${tutorial-project-dir} and select Properties from the
pop-up menu. In the Properties dialog click the Java Build Path item. Click the Projects
tab, select/highlight the jbjf project and hit the Delete key. Now click the Libraries tab,
click the Add JARs button and locate the jbjf-<platform>-<ver>.jar file in the tutorials
./lib directory.

Basics Tutorial - Version 1.3.0 Page 27 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Click the OK button to add the jbjf-<platform>-<ver>.jar file to the tutorials project
reference libraries.

Click the OK button to close out of the Properties dialog.
Basics Tutorial - Version 1.3.0 Page 28 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Before we can build the tutorials project with Ant, we need an Ant build.xml file. The
following is a simple build.xml file that will do the job:

<?xml version="1.0" encoding="UTF-8"?>
<!--
USAGE:
...
Builds and packages the XML Batch Framework for a Java batch job.
-->
<project name="jbjf" default="make-local" basedir=".">
 <description>Author: Adym S. Lincoln</description>
 <description>Created: Nov 28, 2006</description>
 <description>Copyright: @2006 Adym S. Lincoln ALL RIGHTS RESERVED</description>
 <description>File used to build and package the Java Batch Job Framework</description>
 <property name="dir.prj.base" value="." />
 <property name="dir.prj.src" value="${dir.prj.base}/src" />
 <property name="dir.prj.libs" value="${dir.prj.base}/lib" />
 <property name="dir.prj.xtract" value="${dir.prj.base}/xtract" />
 <property name="dir.prj.etc" value="${dir.prj.base}/etc" />
 <property name="dir.prj.deploy" value="${dir.prj.base}/deploy" />
 <property name="dir.prj.jdom" value="${dir.prj.base}/jdom" />
 <property name="dir.prj.build" value="${dir.prj.base}/build" />
 <property name="dir.prj.docs" value="${dir.prj.base}/docs" />
 <property name="dir.prj.api" value="${dir.prj.docs}/api" />
 <property name="cvs.pkg.main" value="jbjf-basics-tutorial" />
 <property name="cvs.pkg.src" value="${cvs.pkg.main}/src" />
 <property name="cvs.pkg.jdom" value="${cvs.pkg.main}/jdom" />
 <property name="cvs.pkg.etc" value="${cvs.pkg.main}/etc" />
 <property name="cvs.pkg.bin" value="${cvs.pkg.main}/bin" />
 <property name="cvs.pkg.lib" value="${cvs.pkg.main}/lib" />
 <property name="cvs.pkg.test" value="${cvs.pkg.main}/testing" />
 <property name="dir.prj.work" value="${dir.prj.xtract}/${cvs.pkg.main}" />
 <property name="dir.prj.compile" value="${dir.prj.work}/classes" />
 <property name="dir.prj.compile.lib" value="${dir.prj.work}/lib" />
 <property name="dir.prj.compile.src" value="${dir.prj.work}/src" />
 <!--
 JAR Deployment:
 Name of the final jar file for JBJF.
 -->
 <property name="jar.file.main" value="jbjf-basics-tutorial" />
 <property name="jar.file.version" value="1.0.0" />

 <path id="project.class.path">
 <pathelement location="${dir.prj.libs}/jbjf-win-1.0.0.jar" />
 <pathelement location="${dir.prj.work}/classes/**" />
 </path>
 <target name="clean">
 <echo message="Cleanup work environment..." />
 <antcall inheritAll="false" target="clean-xtract" />
 <antcall inheritAll="false" target="clean-docs" />
 <antcall inheritAll="false" target="clean-deploy" />
 <echo message="Delete ${dir.prj.build}/" />
 <delete>
 <fileset
 dir="${dir.prj.build}/"
 includes="**/*"/>
 </delete>
 </target>
 <target name="clean-xtract">
 <echo message="Delete ${dir.prj.xtract}" />
 <delete dir="${dir.prj.xtract}" />
 </target>

Basics Tutorial - Version 1.3.0 Page 29 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

 <target name="clean-docs">
 <echo message="Delete ${dir.prj.api}" />
 <delete dir="${dir.prj.api}" />
 </target>
 <target name="clean-deploy">
 <echo message="Delete ${dir.prj.deploy}" />
 <delete dir="${dir.prj.deploy}" />
 </target>
 <!--
 Copy the source files from the local location into a working
 directory tree.
 -->
 <target name="local-extract">
 <echo message="Local Extract : ${dir.prj.xtract}" />
 <mkdir dir="${dir.prj.xtract}" />
 <mkdir dir="${dir.prj.work}" />
 <copy toDir="${dir.prj.work}" overwrite="yes" verbose="yes">
 <fileset dir="${dir.prj.base}">
 <exclude name="build/**" />
 <exclude name="bin/**" />
 <exclude name="doc/**" />
 <exclude name="docs/**" />
 <exclude name="etc/**" />
 <exclude name="lib/**" />
 <exclude name="xtract/**" />
 <exclude name="logs/**" />
 <exclude name=".project" />
 <exclude name=".classpath" />
 <exclude name="build.xml" />
 <exclude name="javadoc.xml" />
 </fileset>
 </copy>
 <!--
 CR, CRLF, LF : Convert CR, CRLF, LF to the proper setting
 based on the OS. Also, replace <TAB> with spaces.
 -->
 <echo message="fixcrlf : ${dir.prj.work}"/>
 <fixcrlf
 srcdir="${dir.prj.work}"
 includes="**/*"
 />
 </target>
 <!--
 TARGET : build-engine
 Compiles the main branch of source code for all java classes
 that make up the feed engine.
 <change>
 1.0.1; ASL; 04/04/2007; Removed the jdom dependency...
 </change>
 depends="build-jdom"
 -->
 <target name="build-the-framework" description="Compile main source tree java files">
 <echo message="destdir : ${dir.prj.compile}" />
 <echo message="src path : ${dir.prj.xtract}/${cvs.pkg.src}" />
 <mkdir dir="${dir.prj.compile}" />
 <javac classpathref="project.class.path"
 destdir="${dir.prj.compile}"
 debug="false"
 deprecation="false"
 optimize="true"
 failonerror="true">
 <src path="${dir.prj.xtract}/${cvs.pkg.src}" />
 </javac>
 </target>
 <target
 name="make-local"
 depends="clean,local-extract,build-the-framework">
 <antcall inheritAll="false" target="jar-the-project">
 <param name="jar.file.name" value="${jar.file.main}.jar" />
Basics Tutorial - Version 1.3.0 Page 30 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

 </antcall>
 </target>
 <!--
 TARGET : jar-the-engine
 Packages the classes/ into a single JAR file for deployment.
 -->
 <target name="jar-the-project">
 <echo message="deploy dir: ${dir.prj.deploy}" />
 <echo message="destfile : ${dir.prj.deploy}/${jar.file.engine}" />
 <echo message="basedir : ${dir.prj.compile}" />
 <echo message="manifest : ${dir.prj.compile.src}/manifest" />
 <mkdir dir="${dir.prj.deploy}" />
 <jar
 destfile="${dir.prj.deploy}/${jar.file.name}"
 basedir="${dir.prj.compile}"
 includes="**"
 update="true">
 </jar>
 </target>
</project>

Create a new file in the tutorials project at the root of the project and paste the above
build.xml file into the file. Using the same technique as the JBJF build, compile and
build the tutorial project...right-click on the build.xml file and select Run As -> Ant
Build... Then select the clean and make-local in that order. Once the build completes,
you should have a jarfile called jbjf-basics-tutorial.jar file in a ./deploy directory.

Now let's focus on the script files that will run our batch job. For this first tutorial we'll
develop a single script file and since I'm on Windows I'll be using BAT/CMD scripting.
Conversion of BAT/CMD into SH/BASH is simple enough. To run a java class from a
command line we really only require a few items:

 Java Class name
 CLASSPATH
 Command line arguments

For Windows, you'll need to use the "\" in place for directory path separators. One very
big gripe I have with Windows is this particular issue. Not only does the "\" cause you
to rewrite the code when you port it to BASH/SH, but it's not consistent between
versions of Windows. I've found some version of Windows only require a single "\" into
Java, while other versions require two, "\\". Anyway, be attentive to this issue as you
may encounter an exception related to this.

The following is a sample BAT/CMD script file that will allow you to run the tutorial
code:

rem *
rem **
rem Simple command console script file to run a tutorial batch job.
rem **
rem *
set COMMAND_CLASS=org.jbjf.core.DefaultBatch
@echo off
rem Capture the current CLASSPATH variable...
rem
Basics Tutorial - Version 1.3.0 Page 31 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

set tmpCLASSPATH=%CLASSPATH%
rem Set our CLASSPATH to the needed jarfiles...
rem
set CLASSPATH=.;..\lib\jbjf-<platform>-<ver>.jar;..\deploy\jbjf-basics-tutorial.jar;
%CLASSPATH%
java -cp "%CLASSPATH%" %COMMAND_CLASS% "definition=..\\etc\\jbjf-basics-tutorial.xml"
"name=jbjf-tutorial-basics"
if errorlevel 1 goto failed
:successful
 @echo on
 @echo Feed has completed
 @goto done
:failed

@echo on
@echo Feed has failed
@goto done

:end-if-usage
:done
@echo off
set CLASSPATH=%tmpCLASSPATH%
@echo on

Create a new file called run-tutorial.bat in the ./bin tutorial directory. Paste the above
code into the file and save the file. You need to edit the code and replace the <plat>-
<ver>.jar with the correct platform and version for the jarfile. Next, you'll need to
adjust the log4j setting in the jbjf-basics-tutorial.xml file, change the
./etc/log4j.properties to ../etc/log4j.properties. Next, adjust the ./etc/log4j.properties
file, set the ./logs/jbjf-basics-tutorial.log to ../logs/jbjf-basics-tutorial.log.

To run this script file open up a command prompt console and change the directory to
the ${jbjf-tutorial-dir}/bin directory. Do a dir command to get a file list...your script file
should be on the list. Now just execute the script file. If all goes well, you should see
output similar to the following:

C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>run-tutorial.bat
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>rem *
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>rem **
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>rem Simple command console script file to run a
tutorial batch job.
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>rem **
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>rem *
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>set COMMAND_CLASS=org.jbjf.core.DefaultBatch
2007-04-16 22:22:34,423 [main] INFO org.jbjf.tutorial - Starting jbjf-tutorial-basics...
2007-04-16 22:22:34,423 [main] INFO org.jbjf.tutorial - Work Unit ... Starting ...class
org.jbjf.tasks.Task001Basics
2007-04-16 22:22:34,423 [main] DEBUG org.jbjf.tutorial - Initialize Work Unit...Start...
2007-04-16 22:22:34,433 [main] DEBUG org.jbjf.tutorial - Initialize Work Unit...Complete...
2007-04-16 22:22:34,433 [main] DEBUG org.jbjf.tutorial - Task [Task001Basics()]...Starting...
2007-04-16 22:22:34,433 [main] DEBUG org.jbjf.tutorial - Task [Task001Basics()]...Complete...
2007-04-16 22:22:34,433 [main] INFO org.jbjf.tutorial - Work Unit ... Complete ...
2007-04-16 22:22:34,433 [main] INFO org.jbjf.tutorial - Finishing jbjf-tutorial-basics...
Feed has completed
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>

Basics Tutorial - Version 1.3.0 Page 32 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

When you run this script you may encounter the following exception:

<snip>
C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>set
COMMAND_CLASS=org.jbjf.core.DefaultBatch
log4j:ERROR Could not read configuration file [./etc/log4j.properties].
java.io.FileNotFoundException: .\etc\log4j.properties (The system cannot find the path
specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(Unknown Source)
 at java.io.FileInputStream.<init>(Unknown Source)
 at
org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:297)
 at org.apache.log4j.PropertyConfigurator.configure(PropertyConfigurator.java:315)
 at org.jbjf.util.APILog4j.<init>(Unknown Source)
 at org.jbjf.core.AbstractBatch.initBatch(Unknown Source)
 at org.jbjf.core.AbstractBatch._runBatch(Unknown Source)
 at org.jbjf.core.AbstractBatch._main(Unknown Source)
 at org.jbjf.core.DefaultBatch.main(Unknown Source)
log4j:ERROR Ignoring configuration file [./etc/log4j.properties].
log4j:WARN No appenders could be found for logger (org.jbjf.tutorial).
log4j:WARN Please initialize the log4j system properly.
Feed has completed

C:\My Data\projects\jbjf\jbjf-tutorial-basics\bin>
</snip>

To correct this, edit the JBJF Batch Definition file and adjust the log4j properties file
directory path. When running the tutorial from Eclipse's Launch Facility, the working
directory is ${project-dir}. But the console command script file runs from ${project-
dir}/bin. Thus, the log4j properties file is actually at ../etc/log4j.properties.

Basics Tutorial - Version 1.3.0 Page 33 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

Java Batch Job Framework

Other Resources
JBJF Website – http://jbjf.sourceforge.net/
JBJF Tutorials/Documentation - http://jbjf.sourceforge.net/documentation.html
Tutorial Source Code - http://jbjf.sourceforge.net/downloads/jbjf-tutorial-basics.zip

Basics Tutorial - Version 1.3.0 Page 34 of 34 Author: Adym S. Lincoln
Originally Created 10/30/2006 Last Update 1/21/2010
Copyright 2006-2010 JBJF. ALL RIGHTS RESERVED

http://jbjf.sourceforge.net/downloads/jbjf-tutorial-basics.zip
http://jbjf.sourceforge.net/downloads/jbjf-tutorial-basics.zip
http://jbjf.sourceforge.net/documentation.html
http://jbjf.sourceforge.net/

	Preamble
	Glossary
	References

	Basics Tutorials - Development
	Prerequisites
	Project Setup
	Adding the JBJF Jar file
	Creating Classes
	Creating the JBJF Batch Definition file
	root element
	jbjf-parameters
	jbjf-email
	jbjf-directories
	jbjf-tasks
	jbjf-logs

	Creating the Log4j Properties file

	Basics Tutorials - Running the Batch Job
	Launch Facility
	Console Configuration

	Other Resources

